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Importance of Academic Actuality

(a) ResNet [16] downloads (tf-hub) - accuracy
76.15%

(b) EfficientNet B0 [32] downloads (tf-hub) -
accuracy 77.10%

Efficient inference starts with efficient selection of the base model !
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Image Classification

Table: ImageNet - Runtime on V100 - New references: Cait [34] and EffNet V2 [31] -
Old reference: ResNet [16]

Architecture type accuracy params Flops Runtime

ResNet 50 ConvNet 76.15 25M 4B 33ms

EfficientNet V2 S ConvNet 83.9 22M 8.8B 24ms
CaiT xxs24 Transformers 78.52 12M 2.5B 16ms

EfficientNet V2 XL ConvNet 87.3 208M 94B 100+ms
CaiT m36 Transformers 85.1 270.9M 53.7B 100+ms
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Object Detection

Table: MSCOCO dataset – Runtime on V100 – New references: Dual-Swin-L (HTC) [22]
and YOLOv7-E6 [35] – Common references: EfficientDet [33] and DETR [6] – Old
reference: Faster-RCNN [28]

Architecture type APtest/APval params Flops Runtime

Faster-RCNN [28] ConvNet 44 60M 246G 172ms (M40)

EfficientDet-D0 [33] ConvNet 34.6/33.5 3.9M 2.5B 16ms (Titan V)

EfficientDet-D7 [33] ConvNet 52.2/51.8 52M 325B 262ms (Titan V)

DETR DC5-R101 [6] CNN/Trans. - / 44.9 60M 253G 100ms

Dual-Swin-L [22] Transformers 59.4/59.1 453M - 600+ms
YOLOv7-E6 [35] ConvNet 56.0 / 55.9 97M 515G 18ms
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Keypoint Estimation

Table: MS COCO - new references: VitPose [37] and RSN-50 [4] - old reference: CMU
Pose [5] - speed measured on GPU A100

Architecture type AP params GFlops Runtime

CMU Pose [5] ConvNet 61.8 26M - 1-ms

ViTPose-B [37] Transformers 75.8 86M - 1ms
RSN-50 [4] ConvNet 74.7 25.7M 6.4 -

ViTPose-B [37] Transformers 79.1 632M - 4ms
4× RSN-50 [4] ConvNet 79.2 111.8M 61.9 -
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Semantic Segmentation

Table: Cityscapes dataset – New reference: ViT-Adapter-L [9] – efficient references:
EfficientPS [25] and SFNet-R18 [21] – Old reference: DeepLabv3-R103 [7]

Architecture type mIoU params Flops Runtime

DeepLabv3-R103 [7] ConvNet 81.3 58M — —

ViT-Adapter-L [9] Transformer 85.2 327M — —

SFNet-R18 [21] ConvNet 80.4 13M — 40ms GTX 1080Ti

EfficientPS [25] ConfNet 84.2 40.89M 433B 166ms Titan RTX
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Machine translation

Table: WMT2014 English-French dataset – New reference: 60L-12L ADMIN [24] –
efficient reference: LightConv [36] – Old reference: Seq2seq [29]

Architecture type BLEU params Runtime

Seq2seq [29] LSTM 34.81 5*384M 1700 w/sec (C++ on GPU)

LightConv [36] ConvNet 43.1 213M 3.9 sent/sec (En-Gr, P100, batch one)

60L-12L ADMIN [24] Transformer 43.8 262M —
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Standard Home PC consumption

(a) CPU power consumption (b) Home appliances power consumption

Figure: Modern PCs with last gen components draw 1000Watt under heavy workloads
such as deep learning trainings.
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Cloud Computing

(a) V100 (industrial) vs RTX 3090 (personal) (b) A100 (industrial) vs V100 (industrial)

Figure: Industrial GPUs draw less power than personal ones.

source : nvidia technical report
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Cloud Computing

(a) cloud energy consumption [1] (b) French power production

Figure: Industrial GPUs draw less power than personal ones.
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Edge Devices and MCU

Table: Comparison between different computing devices in terms of power consumption.

build data-center rack next gen home pc home pc ST MCU
power consumption 3000W 1000W 300W ≈ 2.5W

source : ST technical report
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Small backbones

Defining an efficient Neural Network starts by the right backbone. The current
state of the art ranging from faster to more accurate is covered by MobileNet V3
[17] and EfficientNet V2 [31]. Their specificities are:

• depthwise convolutional layers

• silu activation functions

• usage of cut-mix and various data-augmentation

• usage of larger data corpus

• squeeze and excitation (for efficientnet)

• optimization of layers size through NAS
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Small Transformers

Transformers have achieved very impressive performance in the last few years.
They should also be less costly to infer as they require way less floating point
operations to run. However they still suffer from two drawbacks

• more complex intermediate operations (attention, gelu, softmax and layer
normalization)

• very costly training

Although the last point has been improved in [34]
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Training Cost Matters

We spend more time training models than actually inferring with them on real
use-cases. Still, very few research is dedicated to lowering the cost of neural
networks training. We list here some references on the matter:

• Net2Net [8] for faster training

• CaIT [34] training with fewer data for image transformers
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Motivation

Many hardware only support integer inference and more specifically int8 such as
micro controller units (mcu). Furthermore some larger devices leverage efficiently
such representations like the Nvidia A100. This is why we are interested in
quantization which consists in converting float32 operations into lower bit-width
representations.
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Principle

Let X be a tensor, if we note Q the quantization operator, then
Q(X ) ∈ {−2b−1 − 1, . . . , 2b−1 − 1} et X ∈]− α;α[. The quantization
operator is defined as follows

Q : X 7→
⌊
X × 2b−1−1

α

⌉
∈ {−2b−1 − 1, . . . , 2b−1 − 1} (1)

The equation of the operation defined by a layer

f : Ade → Bds

X 7→ σ(WX + B)
(2)

becomes
f : Ade → Bds

X 7→ σ(Q−1(Q(W )Q(X )) + B)
(3)

See [19, 20]
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Symmetric vs Asymmetric

In equation 1, the quantized support is symmetric and any distribution, even an
asymmetric one, is mapped to a symmetric distribution. To tackle this limitation,
it is common to use a zero-point. Equation 1 becomes

Q : X 7→
⌊
z + X × 2b−1−1

α

⌉
∈ {−2b−1 − 1, . . . , 2b−1 − 1} (4)

The zero point z centers the distribution.
See [19, 26]
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Per-channel vs Per-tensor

The operators defined previously use a single scaling factor for the entire tensor.
This is called per-tensor quantization. It is very common, in order to improve the
final accuracy, to use per-channel quantization for weight tensors. This simply
consists in using a vector of scaling factors per-output channel.
See [41, 2]
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Accumulators

Following the layer definition from equation 3, if we quantize in 8 bits, for
instance, then multiplying two int8 values may overflow. To tackle this limitation ,
it is a common practice to use accumulators with larger bit width. In other words
multiplications are performed with low bit width but sums are performed with
larger bit width. Very few research articles aim at solving this problem [27].
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PTQ techniques

There is a wide range of already trained neural networks as well as networks that
are or will be trained on proprietary data. In other words, networks with correct
weight values but training data is not available or available in low quantity.
To perform quantization in such instances, we use Post-Training Quantization.
See the practice session + [41, 2, 3, 10, 12, 13, 42, 26]
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QAT techniques

When data is available, the key challenge is to handle the rounding operator.
Formally, the rounding operator has a zero gradient almost everywhere which
cancels out the gradient descent optimization. Straight Through Estimation (STE)
is the most effective trick known to this day in Quantization Aware training
(QAT). The idea is simple: replace the real gradient by the identity operator.
See [15, 18, 23, 30, 11, 14]
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Summary of Quantization

Table: PTQ performance on ImageNet

modèle W8/A8 W4/A4 Ternaire Binaire

ResNet 50 ≈ 100% ≈ 90% - -

MobileNet V2 ≈ 100% ≈ 50% - -

EfficientNet B0 ≈ 100% ≈ 50% - -

Table: QAT performance on ImageNet

modèle W8/A8 W4/A4 Ternaire Binaire

ResNet 50 ≈ 105% ≈ 100% ≈ 92% ≈ 90%

MobileNet V2 ≈ 105% ≈ 90% ≈ 75% -

EfficientNet B0 ≈ 100% ≈ 95% - -
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Principle

Pruning consists in removing computations in the neural network graph. This can
be done in a structured manner (removing filters, neurons, ...) or in an
unstructured manner (removing single scalar operations). The latter usually
achieves higher pruning rates but is harder to actually leverage as it relies on
sparse matrix computations.
All in all, pruning requires to either measure the importance of computations in
order to remove the least important ones, magnitude-based pruning or measure
similarity in order to merge similar operations, similarity-based pruning.

Yvinec et al MLA October 18, 2022 28 / 38



Magnitude-based
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See [40]
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Similarity-based


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See [39, 38]

Yvinec et al MLA October 18, 2022 30 / 38



Fine-tuning

To recover the accuracy when the pruning rate is too high, fine-tuning is the
standard approach. It goes from a full re-training process to a few optimization
steps. This step is subject to hyper-parameter tuning like any training phase.
Some pruning techniques even use several full-training in order to achieve the
highest possible accuracy.
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Summary of Pruning

Table: Empirical pruning performance

modèle tache % paramètres retirés

ResNet 56 Cifar 10 ≈90%

Wide ResNet 28-10 Cifar 10 ≈75%

ResNet 50 IamgeNet ≈60%

MobileNet V2 ImageNet ≈40 %
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