remarques: Pour résoudre ce QCM, vous n'avez le droit à aucun documents. Certaines questions peuvent admettre plusieurs bonnes réponses. **Prénom** / **Nom:**

Question 1 : Quelles assertions sont vraies
\square si je peux calculer AB et AC alors, je peux calculer $A(B+C)$
\square si je peux calculer AB et BC alors, je peux calculer CBA
\square si je peux calculer AB et BC alors, je peux calculer ABC
\square pour toute matrice A , son produit avec la matrice qui vaut zéro partout donne toujours une matrice qui vaut zéro partout
Question 2: La fonction $f:(A,x)\mapsto \mathbf{relu}(Ax)$ avec $x\in\mathbb{R}^n$ et $A\in\mathbb{R}^{m\times n}$
\Box f admet 2×1 dérivées partielles
\Box f admet $2 \times m$ dérivées partielles
\Box f admet $(n \times m + n) \times n$ dérivées partielles
\Box f admet $(n \times m + n) \times m$ dérivées partielles
\Box f admet $(n \times m \times m) \times m$ dérivées partielles
$\textbf{Question 3: La fonction softmax avec} x \in \mathbb{R}^n$
\square admet n^2 dérivées partielles
\square admet n dérivées partielles
\square vérifie softmax $(x)_i \in [0:1]$
\square vérifie $\sum_{i=1}^{n} \operatorname{softmax}(x)_i < 1$
\square vérifie $\sum_{i=1}^{n} \operatorname{softmax}(x)_i = 1$
\square vérifie $\sum_{i=1}^{n} \operatorname{softmax}(x)_i > 1$
Question 4 : La descente de gradient construit une suite $(u_n)_{n\mathbb{N}}$ telle que
$\square \ u_n = u_{n-1} - \lambda 2u_{n-1}$
$\square \ u_n = u_{n-1} - \lambda J_f(u_{n-1})$
$\square \ u_n = u_{n-1} + \lambda \nabla_f(u_{n-1})$
$\square \ u_n = u_{n-1} + \lambda J_f(u_{n-1})$
$\square \ u_n = u_{n-1} - \lambda \nabla_f(u_{n-1})$
ici, on ne fait de distinction entre jacobienne et gradient
Question 5 : Soient f et g deux fonctions de \mathbb{R}^2 dans \mathbb{R}^2 . On a $J_f(x)=\begin{pmatrix} x_1 & x_1 \\ 0 & x_2 \end{pmatrix}$, $J_g(x)=\begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$ e
$g(x) = \begin{pmatrix} 2x_1 \\ -x_1 + x_2 \end{pmatrix}$
\square la Jacobienne $J_{f \circ g} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$
\square la Jacobienne $J_{f \circ g} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix}$