remarques: Pour résoudre ce QCM, vous n'avez le droit à aucun documents. Certaines questions peuvent admettre plusieurs bonnes réponses. **Prénom** / **Nom:**

Question 1 : En notant ∇f (qui se lit "nabla de f") le gradient de f (équivalent a la jacobienne étudiée en classe), la chain rule donne

Question 2 : Soient trois matrices A, B et C toutes de tailles $n \times n$ et $x \in \mathbb{R}^n$, alors

- $\square \ x \mapsto A \times B \times C \times x$ est dérivable de Jacobienne A
- $\square \ x \mapsto A \times B \times C \times x$ est dérivable de Jacobienne ABC
- $\square x \mapsto A \times B \times C \times x$ admet n^2 dérivées partielles
- \square $(A,B,C)\mapsto A\times B\times C\times x$ admet n^2 dérivées partielles
- \square $(A, B, C) \mapsto A \times B \times C \times x$ admet $3n^2$ dérivées partielles

Question 3 : Soit f une fonction composée dont la dernière fonction est une sigmoïde, *i.e.* $f = \text{sigmoid} \circ f_L \circ \ldots \circ f_1$ ou encore $f(x) = \text{sigmoid}(f_L(\ldots(f_1(x))))$, alors

- $\Box f(x) < 1$
- $\Box \nabla f(x) < 1$
- $\Box f(x) > 0$
- $\Box \nabla f(x) > 0$

Question 4: Montrer qu'il existe deux fonctions $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ telles que $\forall x \in \mathbb{R} \ (f \circ g)'(x) > f'(x) \times g'(x)$ (indication : on peut considérer g croissante et positive)