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Exercice 1

Question 1 : Soit F une fonction
� F continue et scalaire ⇒ F dérivable
�3 F dérivable et scalaire ⇒ F continue
�3 F différentiable ⇒ F continue
� F continue ⇒ F différentiable

Question 2 : Soit A une matrice
� A nilpotente (il existe n tel que An = 0) ⇒ A inversible
� A nilpotente ⇒ A est carrée
� A inversible ⇒ A nilpotente

Question 3 : La descente de gradient repose sur la formule
� θ ← −θ − µJL◦F
� θ ← θ + µJL◦F

�3 θ ← θ − µJL◦F
� θ ← −θ + µJL◦F

Question 4 : La chain rule donne
� Jfn◦···◦f1 = Jfn◦···◦f1 × · · · × Jf1
� Jfn◦···◦f1 = Jfn × · · · × Jf1
�3 Jfn◦···◦f1 = Jfn(fn−1 ◦ · · · ◦ f1)× · · · × Jf1
� Jfn◦···◦f1 = Jf1 × · · · × Jfn(fn−1 ◦ · · · ◦ f1)

Question 5 : Soit A une matrice carrée

�3 si A est inversible alors le système AX = B admet une solution
� si A est inversible alors le système AX = B admet aucune solution

�3 si A n’est pas inversible alors le système AX = B admet une solution
� si A n’est pas inversible alors le système AX = B admet aucune solution

Exercice 2

Soient F : X 7→ AX et L(Y,X) 7→ −
∑n
i=1 yi ln(xi) + (1− yi) ln(1− xi).

1. Nous posons X un vecteur de taille 2 et F (X) est un scalaire. Donner les dimensions de A
A ∈ R1×2

2. Donner la Jacobienne de F par rapport à X et par rapport à A
Par rapport à X, JF = A et par rapport à A, JF = XT .
3. Supposons que X et Y sont des scalaires. Donner la Jacobienne de L par rapport à X.
La fonction L devient

L(y, x) = −(y ln(x) + (1− y) ln(1− x))

et donc
L′(y, x) = −y

x
− 1− y

1− x
= −y + x− 2xy

x(1− x)

4. Supposons que X =
(
1 0 0

)T
A =

(
0.5 1 1

)
et Y = 1, Appliquer la descente de gradient une fois

avec µ = 0.25 pour optimiser A (on dérivera donc par rapport à A
Nous devons calculer la Jacobienne JL◦F .{

JL◦F (X) = −y+AX−2AXyAX(1−AX) X
T = − 1+0.5−1

0.5(1−0.5)X
T = −2XT

A ← A− µJL◦F (X)

donc la nouvelle valeur pour A est
(
1 1 1

)
.

5. Montrer qu’avec la nouvelle valeur pour A, la fonction F donne la bonne prédiction.
On veut F (X) ≈ Y . Or avec la nouvelle valeur de A, F (X) = 1 = Y .
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Supposons maintenant que nous disposons un autre Modèle G : X 7→ BX avec B une matrice carrée. Nous savons

pour BX =

2
0
1

 et B =

1 −1 0
0 1 1
0 1 −1

.

6. Inverser B et donner la valeur de X
Appliquons les pivots de Gauss 1 −1 0

0 1 1
0 1 −1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


1 −1 0
0 2 0
0 1 −1

∣∣∣∣∣∣
1 0 0
0 1 1
0 0 1


1 −1 0
0 1 0
0 1 −1

∣∣∣∣∣∣
1 0 0
0 1/2 1/2
0 0 1


1 0 0
0 1 0
0 1 −1

∣∣∣∣∣∣
1 1/2 1/2
0 1/2 1/2
0 0 1


1 0 0
0 1 0
0 0 −1

∣∣∣∣∣∣
1 1/2 1/2
0 1/2 1/2
0 −1/2 1/2


1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1 1/2 1/2
0 1/2 1/2
0 1/2 −1/2


Donc l’inverse de B est

B−1 =
1

2

2 1 1
0 1 1
0 1 −1


Calculons donc B−1BX

B−1BX =
1

2

2 1 1
0 1 1
0 1 −1

2
0
1

 =
1

2

 5
1
−1



Exercice 3 : Densité des Matrices Inversibles

Le but de cet exercice est de prouver que l’ensemble des matrices inversibles est dense. Pour cela, on va prouver que
pour chaque matrice non-inversible il existe une autre matrice inversible aussi proche que l’on veut de la première.
Pour cela nous allons définir une distance sur l’espace des matrices carrée de taille n× n.

d(M1,M2) = max
i,j
{(|M1 −M2|)i,j}

Ce qui correspond, en français, à l’écart maximal entre M1 et M2. Pour rappel une distance est une application telle
que d(M1,M2) = d(M2,M1), d(M1,M2) = 0 si et seulement si M1 =M2 et d(M1,M3) ≤ d(M1,M2) + d(M2,M3).
1. vérifier que d est une distance
Vérifions les trois propriétés. Dans l’ordre de l’énonce, soient M1 et M2 deux matrices quelconques de taille n × n.
Alors

d(M1,M2) = max
i,j
{(|M1 −M2|)i,j} = max

i,j
{(|M2 −M1|)i,j} = d(M2,M1)

On a donc vérifié la première propriété. Ensuite,

d(M1,M2) = 0⇔ max
i,j
{(|M1 −M2|)i,j} = 0⇔ ∀i, j (|M1 −M2|)i,j = 0⇔M1 =M2
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Et enfin,
d(M1,M3) = max

i,j
{(|M1 −M3|)i,j} ≤ max

i,j
{(|M1 −M2|+ |M2 −M3|)i,j}

≤ max
i,j
{(|M1 −M2|)i,j}+max

i,j
{(|M2 −M3|)i,j} = d(M1,M2) + d(M2,M3)

d est donc bien une distance.
2. Soit la suite Mk =M + 1

nId, montrer que la suite Mk converge vers M
Il suffit de montrer que

lim
n→∞

d(M,Mk) = 0

En effet,
d(M,Mk) = max

i,j
{(|M −Mk|)i,j}

= max
i,j
{(|M −M − 1

n
Id|)i,j}

= max
i,j
{(| 1
n
Id|)i,j}

=
1

n
→n→∞ 0

3. Rappeler le critère d’inversibilité d’une matrice par rapport au déterminant.
Une matrice est inversible si et seulement si

det(A) 6= 0

La définition générale du déterminant d’une matrice A est récursive : si A est de taille 1 alors det(A) = A1,1 et sinon

det(A) =
n∑
j=1

(−1)1+jA1,jdet(A[1,j])

où A[1,j] désigne la matrice A privée de la première ligne et jth colonne. Cette matrice est donc de taille (n−1)×(n−1).
4. Montrer que la fonction x 7→ det(M − xId) est un polynôme de degré n en x
Là on va devoir s’accrocher un petit coup... Nous allons remplacer A dans la définition du déterminant par M − xId,
on obtient alors

det(M − xId) =
n∑
j=1

(−1)1+j(M − xId)1,jdet((M − xId)[1,j])

Or le terme (M − xId)1,j est un polynôme de degré au plus 1 en x. En effet, il s’agit d’une coordonnée de la matrice
M − xId, donc c’est un terme qui contient au plus x et ne contient pas de termes en xm pour m ≥ 2. Ainsi le
déterminant est un polynôme de degré :

degré(det(matrice de taille n× n)) = degré(det(matrice de taille (n− 1)× (n− 1))) + 1

Ainsi, on en déduite que le déterminant d’une matrice M − xId est un polynôme de degré au plus n en x.
5. Montrer qu’une infinité de terme de la suite Mk sont inversibles
Puisque de le déterminant de Mk est un polynôme de degré n, il admet au plus n racines et donc ne s’annule qu’au
plus n fois. Donc il y a au plus n termes de déterminant nul dans la suite Mk. En conséquence il y a une infinité de
termes inversibles
6. Conclure
En recoupant les résultats précédents, il existe une suite dans la suite Mk de matrices inversibles qui convergent vers
M ce qui conclut l’exercice.

Exercice 4 : Théorème d’Approximation Universelle

Montrons le théorème d’approximation universelle mentionnée en cours. Considérons un réseau de neurones artificiels
de la forme suivante F : X 7→ Bσ(AX) avec A ∈ Rm×n, B ∈ Rn×m.
1. On pose F : Ri → Ro. Donner les valeurs de i and o en fonction de m et n

n = i = o
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On veut montrer que l’on peut approximer toute fonction G continue sur [−1; 1] (donc X ∈ [−1; 1]), on pose donc
n = 1 pour le reste de l’exercice.
2. Montrer que toute suite bornée admet une sous-suite convergente
C’est une démonstration du théorème de Bolzano-Weierstrass dans un cas simple. On pose la suite bornée (xn)n∈N
bornée entre a et b. Puisque la suite admet un nombre infini de terme. On note les intervalles I0 = [a, (a + b)/2] et
I1 = [(a + b)/2]. (xn)n∈N admet une infinité de termes dans au moins un des deux intervalles. On construit alors
itérativement la sous-suite suivante : premier terme dans I = [a; b] puis un second terme dans l’intervalle I0 ou
I1 contenant une infinité d’éléments. En répétant le processus avec I00, I01, I10 et I11 (en écriture binaire), nous
construisons bien une sous suite dont l’ensemble de termes voit leur distance bornée et tendre vers 0. C’est donc une
suite de Cauchy qui est convergente (car dans R).
3. Montrer que G est bornée
Pour montrer que G est bornée, il suffit de montrer que |G| est majorée. Comme la fonction valeur absolue est continue
sur [−1; 1] donc |G| aussi. Supposons que |G| ne soit pas majorée. Alors il existe une suite (xn)n∈N dans [−1; 1](N) tels
que limn→∞ |G(xn)| =∞. Par la question précédente, il existe une sous suite convergente (xµ(n))n∈N de (xn)n∈N. On
a donc

∞ = lim
n→∞

|G(xn)| = lim
n→∞

|G(xµ(n))| = |G( lim
n→∞

xµ(n))| 6=∞

Ce qui achève la preuve.
4. Montrer que pour toute constante ε > 0 il existe une liste de nombre a1, ...aN telle que pour tout
x, y ∈ [an; an+1]

2 on a |G(x)−G(y)| < ε
On note ai les points de [a; b] tels que ai < ai+1 et pour tout x dans [ai; ai+1[ on ait |G(ai) − G(x)| < ε et |G(ai) −
G(ai+1)| > ε. Si la suite des ai est finie alors la preuve s’arrête. Supposons par l’absurde que la suite des ai est infinie.
Alors il existe une limite l à la suite des ai dans [a; b[. Or par continuité de G la suite des G(ai) converge et donc la
suite des ai est stationnaire.
5. Montrer le théorème d’approximation universelle pour σ = ReLU.
Il suffit de prendre A et B de telle sorte à construire une fonction affine par morceaux (exercice vu en cours) sur
chaque intervalle [an; an+1].
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